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Abstract-The generalized plasticity model. which has previously been discussed by the author
primarily in a theoretical way. is made specific in the form of a simple version based on a single
function of the state variables. After a review of the basic concepts of generalized plasticity. the
appropriate simplifications are introduced. leading to a one-dimensional model that can be used to
generate. in closed form. stress-strain diagrams under arbitrary stress-controlled loading. including
cyclic loading. This model is then e;l;tended into a multiaxial form that is used to solve the problem
of the plastic e;l;pansion (with elastic deformations neglected) of a pressurized thick-walled tube.

I. INTRODUCTION

In the 1970s I first wrote about what I then called a "simple" theory of rate-independent
plasticity (Lubliner. 1974. 1975). based only on the assumption that plastic deformation
may occur on loading but not on unloading. ( called the theory that because I thought it
conceptually simpler than the classical theory; for one thing. it does not require the concept
of a yield criterion. an essential ingredient of classical plasticity. ( devoted further work to
elaborating the axiomatic structure of the theory (Lubliner. 1980), with attention to the
form tuken by the maximum-dissipation postulate (Lubliner. 1984). the uniqueness theorem
(Lubliner. 1986). and the propagation of acceleration waves (Lubliner. 1987). (n the course
of this work it became apparent how c1ussical plasticity may be precisely defined as a special
cuse. and ( have consequently come to call the model generali:ed plasticity. With the
exception of an illustrative application to concrete (Lubliner, 1981), this work has been
largely abstract. dealing with the model in its most general form. The purpose of the present
paper is to present a specific and quite simple version of the model that can be put to
immediate computational use. By way of introduction. a brief summary of the essential
features of general plasticity is given first.

There arc two fundamental assumptions underlying the model. The first is that the
local mechanical statet in a body described by the model is determined by the control
variables (typically the components of stress of strain, though mixed control is possible as
well) and a finite number of internal variables. The second is that the relation between stress
and strain, as mediated by the internal variables, is rate-independent. For the sake of
definiteness stress control is assumed, with the stress components assembled in the vector
a, while the internal-variable vector is denoted ~.

A local process is defined as elastic if the internal-variable vector remains constant
throughout. It follows from rate-independence that a process in which the control variables
remain constant is necessarily elastic. The elastic range of a state defined by (a, ~), denoted
8(a. ~). is defined as the set of stress vectors attainable from a by means of an elastic
process. Clearly, a itself belongs to 8(a. ~). Furthermore. if 1:(~) denotes the set of all
stresses a such that (a.~) is a possible state, then it is a quite reasonable assumption that
for all a E 1:(~). 8(a,~) is a closed subset of 1:(~) ; a similar assumption was made by Pipkin
and Rivlin (1965). The assumption, in effect, limits the possible processes to "reasonable"
ones. As a result, a given a E 1:(~) is either an interior point or a boundary point of 8«(1, ~).

(f it is an interior point, then all stresses in a sufficiently small neighborhood of a are
attainable elastically, and (a. C:) may be called an elastic state; the equations of evolution
for c: must be such that c: = 0 at any elastic state. If, on the other hand, (a, ~) is a boundary
point, then only the stresses located inward from the boundary of cf(a,~) at a are attainable

t Thermal effects are ignored here. though they can be incorporated without difficulty.
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elastically. while those located outward can be attained only with a change in ~; (<1.~) may
then be called a plastic state. If the boundary of 8(fI,~) is formed by a surface in stress
space, then this surface is equivalent to what was called the loading surface by Phillips and
Sierakowski (1965).

The set of all stresses fI such that (cr, ~) is an elastic state is called the elastic domain at
~ and denoted 9(~). This set can be shown, under some none-too-stringent technical
conditions, to be an open subset of I(~), and its boundary, if formed by a surface, is
equivalent to the yield surface of Phillips and Sierakowski (1965). In fact, the theory
of plasticity with non-coincident yield and loading surfaces, introduced by Phillips and
Sierakowski (1965) and extended by Eisenberg and Phillips (1971), was the inspiration for
my research. However. a closed set need not contain any interior points, so that in gener­
alized plasticity elastic states need not exist at all [the behavior of materials with no elastic
domain was also studied by Dafalias and Popov (1977)]. A case of some interest arises
when an elastic domain takes the fonn of a shell of finite thickness, and the shell tends to
zero thickness. so that two parts of the yield surface coalesce to form a quasi-yield surface
(Lubliner. 1975). In any case, if a yield surface does exist, plastic states may have stresses
lying outside the yield surface, except in the special case represented by classical plasticity.
which may be strictly defined as the case where the elastic range of (fI,~) is independent of
fl. All the features ofclassical plasticity (coincident yield and loading surfaces. impossibility
of stresses outside the yield surface, and so on) follow f!'Om the definition (Lubliner, 1984).

An immediate consequence of the existence of stress states outside the yield surface is
that if an unloading process from a plastic state does not reach the yield surface (if there
is one) and is followed by reloading, plastic deformation takes place immediately, a response
dubbed "unconventional" by Drucker and Scereeram (1987) [see also Drucker (1988)].
who proposed an cui hoc model to deal with it. Other "unconventional" models to represent
similar behavior that have been developed over the past 15 years have been based on an a
priori assumption of multiple surfaces in stress space. with a bewildering array of names
[bounding surface. subyicld surface. subloading surface. normal-yield surface. etc.; sec
Hashiguchi (1989) for a recent survey]. Much of the development involves geometric
relationships among the surfaces, at times reminiscent of the epicycles of Ptolematic astron­
omy. The model discussed here. on the other hand, uses only elementary set theory and
topology; any surfaces that appear arise naturally.

Zienkiewicz and Mroz (1984) also introduced a model called generalized plasticity,
with special attention to geomaterials but with an even broader scope than here. in that
plastic deformation may take place during unloading as well.

2. SIMPLIFICATIONS OF THE MODEL

Some simplifications are now introduced in order to reduce the model from an abstract
to a specific fonn. To begin with, only a geometrically-linear version of the model is
discussed here. so that one is not concerned with Lagrangian or Eulerian components,
objective rates. and the like.

If (fI,~) is a plastic state, and if the boundary of (cr.~) is locally smooth at fl. with the
outward nonnal denoted v. then both rate-independence and the defining property of a
plastic state are satisfied if the equation of evolution for ~ at (fI.~) is given by

(I)

where (.) is the Macauley bracket, that is, (x) = x for x ~ 0 and (x) = 0 for x < 0, and
9 is a function with values in the space of internal-variable vectors. For convenience. the
outward normal vector v will be taken as a unit vector. that is. Ivl = I, where "I is an
appropriate norm.

An evolution equation of the form (I) presupposes stability under stress control. since
it must be possible to specify an arbitrary stress rate. Consequently the model proposed
here is limited to work-hardening solids. It is possible to formulate the model under strain
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control as well, as was done originally (Lubliner, 1974), but at some sacrifice of the simplicity
that is the goal of the present model.

The internal-variable vector ~ will be assumed to be composed of the plastic strain
vector Il P and an additional internal-variable vector re, so that eqn (I) is replaced by the two
equations

K =hp(v·o).

(2)

(3)

where h is non-negative, and zero at an elastic state. while, again for convenience. 1).,1 = l.
The special case A= v corresponds to normality or associated plasticity.

A particularly simple associated form of eqn (2) is one that is defined by the single
dimensionless function /(a: aP, re) such that

I
h = 7J (/),

where (J is a constant having the dimension of stress. and

o//oa
)., = v = IcY/val'

(4)

(5)

reflecting the assumption that loading surfaces are given locally by / = constant. The
resulting form of eqn (2) is therefore

(6)

If there exists a region in stress space where f < 0, then this region is just the clastic
domain, and / =0 defines the yield surface. In that case the limit as /J -+ 0 represents
classical plasticity: / cannot be positive. while the limit of (/)/P is determined by the
classical consistency condition (in generalized plasticity there is. of course. no consistency
condition, since there is no need to enforce a yield criterion). On the other hand. if /~ 0
everywhere (so that (/) = j). then there is no elastic region and no yield surface. but if
there exist surfaces in stress space where / = O. then these surfaces are the aforementioned
quasi-yield surfaces.

Another interesting feature of the simple model is that it may be combined with the
viscoplasticity model due to Perzyna (1963) so that the plastic strain rate is given by

(7)

where}' plays the role of a viscosity (though its dimensions are those of reciprocal time).
A body described by (7) has both instantaneous plasticity and viscoplasticity. with the same
yield criterion governing both. The combined model described by (7) will not be pursued
here.

The function f may be given any form corresponding to the standard yield functions
of plasticity theory-Mises. Tresca, etc.-with any hardening rule as reflected in the choice
of the internal variables making up re (the "hardening variables") and their evolution eqn
(3). A common choice is one in which re consists of a single component K. and p consists
of a single component Jl that is defined either as IAI (corresponding to Ii: = liP I) or as (J' A
(corresponding to Ii: = a' i P). A combination of isotropic and one of the simple kinds of
kinematic hardening may then be represented. More sophisticated hardening models require
more components in re. exactly as in classical plasticity and viscoplasticity.
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3. A SI~IPLE ONE-DIMENSIONAL MODEL

The behavior of the simple model introduced in the preceding section will be illustrated
by a one-dimensional case. that is, one with only one independent stress component a and
its conjugate plastic strain eP

• The hardening variable K is defined by the evolution equation
K = WI; the hardening is assumed to be linear and to consist of both kinematic (with
hardening coefficient 2") and isotropic (with hardening coefficient 2") hardening. With
(l = 2" + 2". the yield function f is taken as

(8)

where ay is the initial yield stress. The stress-plastic strain diagrams for any stress-controlled
process are then the result of integrating the differential equations

(9)

( 10)

Since the equations are piecewise linear with constant coefficients. they can easily be
integrated in closed form.

I"ilialloading curr(!
Upon initial loading, with stress and strain positive. we have K = er. and eqn (9) takes

the form

(II)

the initial condition being er = 0 at a = O. Thus the plastic strain remains at zero for
o~ a ~ av. while for a > av. er is the solution of

whose solution satisfying eP = 0 at a = a v is

(12)

The curve is thus asymptotic to a straight line that is parallel to the line a = ay + cce P

representing the yield surfaces, and displaced from it in the positive stress direction by the
distance p. The quantity II is thus a measure of how far outside the yield surface stresses
may lie. and it is obvious that classical plasticity is recovered when p = O.

Equation (12) implicitly defines the stress as a function of the plastic strain; this
function will be written as a = av + (Jep«(lf,r/p). Since cP(O) = 0, it is clear that for (l = 0 (the
case of perfect plasticity). the initial loading curve is given by (J = ay. as in classical plasticity.
independently of p. This result is consistent with the previously-noted limitation of the
proposed model of generalized plasticity to work-hardening solids.

Reloading clines
If the initial loading process is interrupted by unloading that does not produce reverse

plastic deformation and that is followed by reloading. the identity K = eP remains valid and
the reloading is governed by eqn (II). If the plastic strain attained just before unloading is
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Fig. I. Initial loading. unloading and reloading.
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&~ and if the stress is reduced to the level 0",. + iXf.~ or less (but greater than that required
for reverse plastic deformation). then the reloading curve is given by

Note that this curve is asymptotic not only to the line (T = (Ty +iXl:l'. but to the initial loading
curve given by (12) as well.

The initial and reloading curves arc shown in Fig. I. which also shows the continuation
of the virgin loading curve, the asymptote to which it and the reloading curve tend. and the
trace of the yield surface on the (T--I:I' plane.

If the reloading stops at the same stress. say 0"11\' as the initial loading. is followed by
unloading. and the process is repeated. the result is as shown in Fig. 2. exhibiting the
well-known phenomenon of rellchelillg. The shakedown of ratcheting takes place when
&1' = (0"- O"y )/iX.

Cyclic loading
As the final illustration of an application of the one-dimensional model we consider a

loading program consisting of initial loading up to a maximum stress O"m' unloading and
reverse loading to -O"m. reloading to O"m. and so on. The second is unilateral. that is.
repetitions of loading from zero to O"m and unloading to zero.

Let the index I designate the initial loading phase. 2 the first unloading and reverse
loading phase, 3 the reloading. and so on, so that all the phases with an odd-numbered index

(tr - try)/ f3
2

Fig. 2. One-sided cyclic loading.
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are characterized by algebraically-increasing stress and non-decreasing plastic deformation.
while all the phases with an even-numbered index are characterized by algebraically­
decreasing stress and non-increasing plastic deformation. Let r:f and 1\, denote the values
at the end of the ith phase of the plastic strain and the hardening variable, respectively. In
the course of the ith phase. then, the hardening variable is given by

with 1\0 = r:g = O. Let Cj be defined by

j

C, = 2cr" L (-I)i-1r:j .

i= I

Then the solution of eqn (9) is as follows:
i odd:

-0.10

i even:

Calculated curves, using the assumed values ay = I.Sp and am = 2P, are shown in Figs
3 and 4 for a" = 0 and cr" = a'/3, respectively. It is to be noted that the former value,

1.0

0.5

-+---i+-++----f----+-llt-t-H- atP / 13
05 0.05 0.1

-0.5

-1.0

-1.5

-2.0

Fig. J. Two-sided cyclic loading (x· = 0),
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representing purely kinematic hardening. leads to a symmetric limit cycle with numerically
equal values of the extreme plastic strain. These values can be shown to be given by ± (/J/r:x)x,
x being the solution of the equation

x - e -: -{ = Z - I,

where z = (am-ay)//J; for the case at hand. == 0.5 and x = 0.067. The presence of an
isotropic-hardening component, on the other hand, leads to cycles with ever-diminishing
plastic deformation.

4. A MULTIAXIAL GENERALIZATION

A generalization of the model of the preceding section to cover generalized states of
stress requires only the determination of a form of the function /(a, eP, K) that reduces to
(8) for the appropriate one-dimensional case. To be specific, let us assume that (8) applies
to uniaxial tension and compression. and that initial multiaxial yielding is governed by
either the Mises or the Tresca criterion. The general form of/ is then

(13)

where amust be defined appropriately for each criterion, as must the norm in plastic-strain­
rate space so that Ivl = I and,;; = lePI. The definitions are as follows:

Mises criterion:
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The normal vector v is thus given by the tensor with components V'I = (3,2a)5,}" and the
components of plastic strain rate are

Tresca criterion:

where a, = a,- j~'sf. the subscripts referring to principal-axis components. and

WI = !(16~1+16~1+16~1).

For both criteria. uniaxial tension or compression corresponds to

in principal-axis components. Since s~ = r.~ = - (I 2)r.~. it can easily be verified that f as
given by (13) reduces to that given by (8) (with a = a, and cP = I:D.

Plane plastic deformation. If it is assumed that c~ = 0 identically. then by an.llogy with
classical plasticity based on t~e Tresca flow rule. a: must be intermediate between a, and
a.h while the Mises flow rule requires more specifically that a: = (1/2)(a, +a 31and therefore
a: = (1/2)(a l +(3). since I;~ = -6~. Moreover. for the Mises rule K = (2/J3)16~1 and v =
(J3/2)(I, 0, -I) sgn (a l -a 3). while for the Tresca rule K = 16~1 and v = (I. O. -I) sgn
(a, -a,). For the sake of definiteness the Tresca formulation will be used, so that at a state
where aI ~ al. f takes the form

If no unloading leading to reverse plastic deformation takes place. then I..: = e~. With
def

Ii = j~' +oc", the equation governing the plastic deformation is

since v = (I, O. -1). For monotonic loading. this may be rewritten as

(14)

where P= ~P/j and s = al-al-ay. Equation (14) can be solved in the form

( 15)

virtually the same as the one-dimensional result (12). Consequently. s may be written as a
function of e~ in the form s = p¢(je~/fJ).
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Thick-walled tube under pressure
The preceding formulation can readily be applied to the problem of a thick-walled

tube under internal pressure. The tube is assumed to be in a state of plane strain, and elastic
deformations are neglected. Consequently. if u is the radial displacement. then as a result
of incompressibility it must take the form u = uoa/r, where r is the radial coordinate and a
is the inner radius, and &~ = uoajr2. With U~ and u, denoting the hoop and radial stresses,
respectively. and with b the outer radius. the internal pressure is given by

lb U~ - U
p= --'dr.

a r

and therefore. with s = U~ - U, - Uy.

(16)

where <p is the aforementioned solution of eqn (15). This solution may be obtained by
Newton's method, and the resulting values may be used in the numerical quadrature of the
integral of eqn (16). A relation is thus obtained between [p -Uy In (bla)]/fI and aUolfIa that
depends parametrically on bla. A calculated curve for bla = 2 is shown in Fig. 5, together
with the straight-line asymptote that is obtained by assuming s/fI large in eqn (15). With
the exponential term neglected. <P can be obtained explicitly. and the integration leads to
the asymptote

An approximation for small values of Un may be obtained by noting that for slfJ small,
the right-hand sidc of (15) is approximately (sl fJ) 212 and hence <P can again be obtained
explicitly. The result is

It can be seen that the pressure-displacement curve obtained is qualitatively quite similar
to the uniaxial initial-loading curve of Fig. I.

(p - O"y In(bja)IIP

32
0.0 +----+---t----+---aUo/pa

o

1.5

0.5

1.0

Fig. S. Pressure vs. eltpansion of a thick-walled tube.
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